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The emergence of integrability on both sides of the AdS/CFT correspondence [1 –

3] continues to provide improvements in our understanding of large-N gauge theory and

string theory. Recent progress has centered on a particular limit [4] where the spin chain

describing the single trace operators of N = 4 SUSY Yang-Mills theory becomes infinitely

long.1 Specifically one considers a limit where the U(1) R-charge J1 and scaling dimension

∆ of the operator become large with the difference E = ∆−J1 and the ’t Hooft coupling λ

held fixed. In this limit, the spectrum corresponds to localised excitations which propagate

almost freely on the infinite chain. The remaining interactions between these excitations are

governed by a factorisable S-matrix. In this paper we will describe the minimal possibility

for the complete spectrum of asymptotic states of the spin chain.2

The asymptotic states mentioned above correspond to local excitations above the fer-

romagnetic groundstate of the spin chain. The latter state corresponds to the gauge theory

operator Tr
(
ZJ1

)
where Z is a complex adjoint scalar field with R-charge J1 = 1. The fer-

romagnetic groundstate is not invariant under the full superconformal algebra psu(2, 2|4),

but instead is only preserved by the subalgebra (psu(2|2) × psu(2|2)) n R. The residual

symmetry algebra can also be understood as two copies of su(2|2) with their central charges

identified. This common central charge will play the role of Hamiltonian for the associ-

ated spin chain whose eigenvalue is identified with the combination ∆ − J1. Moreover

as noted in [6], an important subtlety arising is that this symmetry algebra needs to be

further extended by two additional central charges in order to describe excitations of non-

zero momenta. This extended unbroken symmetry is linearly realised on excitations above

the groundstate which consequently form representations of the corresponding non-abelian

symmetry group (PSU(2|2) × PSU(2|2)) n R
3. In the following we will determine which

representations appear in the spectrum of asymptotic states.

The fundamental excitation of the spin chain, known as the magnon, corresponds to

an insertion of a single impurity, with definite momentum p, into the groundstate operator

Tr
(
ZJ1

)
. There are a total of sixteen possible choices for the impurity corresponding to the

various scalars and spinor fields and covariant derivatives of the N = 4 theory [7]. As we

review below, these excitations fill out a multiplet in the bifundamental representation of

(PSU(2|2)×PSU(2|2)) n R
3. In terms of the centrally-extended algebra described above,

1The importance of this limit was also stressed earlier in [5].
2The issue of completeness will be discussed further below.
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these are short representations with an exact BPS dispersion relation which is uniquely

given by the closure of the algebra to be [6, 8, 9],

E = ∆ − J1 =

√

1 + 8g2 sin2
(p

2

)

. (1)

Here, following the convention of [6], we have introduced a coupling g which is related to

the ’t Hooft coupling λ by g2 = λ/8π2. As the residual symmetry generators commute

with the Hamiltonian of the spin chain, each state in the multiplet has the same dispersion

relation (1). With this in mind, we can think of the sixteen states in the bifundamental

multiplet as distinct “polarisations” of a single excitation.

The full spin chain for the planar N = 4 theory has a closed subsector, known as

the SU(2) sector, where only impurities corresponding to one complex adjoint scalar field

are included. Equivalently, we restrict our attention to magnons of a single polarisation.

Within this subsector, it is known that the asymptotic spectrum also includes an infinite

tower of magnon boundstates [10]. These excitations are labelled by a positive integer Q,

which corresponds to the number of constituent magnons of different flavours, as well as

their conserved momentum p. The location of the corresponding poles in the exact magnon

S-matrix indicates that these states have an exact dispersion relation of the form,

E = ∆ − J1 =

√

Q2 + 8g2 sin2
(p

2

)

(2)

which generalises (1). The corresponding classical string solution which precisely repro-

duces (2) has been found in [11, 12]. Scattering matrices for these states have recently

also been constructed in [13, 14]. In the context of the full model, these asymptotic states

in the SU(2) sector should be particular representatives from complete representations of

the symmetry group (PSU(2|2) × PSU(2|2)) n R
3. In fact, we will see below that the

Q-magnon boundstate lies in a short irreducible representation of dimension 16Q2 [15, 16].

The representation in question can be thought of as a supersymmetric extension of the

rank-Q traceless symmetric tensor representation of the unbroken SO(4) ' SU(2)× SU(2)

R-symmetry which is a subgroup of (PSU(2|2) × PSU(2|2)) n R
3. This particular rep-

resentation includes the known BPS boundstates of magnons in the SU(2) sector. An

important consistancy check is that the representation does not lead to boundstates in

any of the other rank one subsectors which are known to be absent [4]. In [6], the dis-

persion relation (1) for excitations transforming in the bifundamental representation of

(PSU(2|2) × PSU(2|2)) n R
3 was derived from purely group theoretical means. As an

additional test of our results, we will extend the analysis to the symmetric tensor represen-

tations relevant for the boundstates described above to provide a parallel group theoretic

derivation of the dispersion relation (2).

To begin, let us first focus on a single copy of su(2|2) ⊂ (psu(2|2) × psu(2|2)) n R and

review some associated basic facts following [6]. The algebra consists of two bosonic gen-

erators Lα
β and Ra

b which generate su(2)× su(2) rotations; two fermionic supersymmetry

generators Qα
b and Sa

β, and finally the algebra also contains a central charge C which

is shared with the other su(2|2). These generators obey the following (anti-)commutation

– 2 –
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relations:

[Ra
b,J

c] = δc
bJ

a − 1
2δa

b Jc , (3)

[Lα
β,Jγ ] = δγ

βJα − 1
2δα

β Jγ , (4)

{Qα
a,S

b
β} = δb

aL
α

β + δα
β Rb

a + δb
aδ

α
β C , (5)

where J stands for any generator with appropriate indices.

In addition, as discussed in [6], the su(2|2) algebra is too restrictive for the discussion

of excitations with non-zero momentum and it is necessary to enlarge it to su(2|2) n R
2 ∼=

psu(2|2) n R
3, with two extra central charges P and K satisfying the anti-commutation

relations,

{Qα
a,Q

β
b} = εαβεabP , {Q̇α̇

ȧ, Q̇
β̇

ḃ
} = εα̇β̇ε

ȧḃ
P , (6)

{Sa
α,Sb

β} = εabεαβK , {Ṡȧ
α̇, Ṡḃ

β̇
} = εȧḃε

α̇β̇
K . (7)

The two extra central charges P and K are unphysical in the sense that they vanish when the

constraint of vanishing total momentum is imposed.3 The full extended subalgebra is then

obtained by taking direct product between two copies of psu(2|2)nR
3 and identifying their

central charges (both physical and unphysical ones), which extend the residual symmetry

algebra from (psu(2|2) × psu(2|2)) n R to (psu(2|2) × psu(2|2)) n R
3. Under the extended

residual symmetry algebra, the central charge C can be identified with the Hamiltonian for

the spin chain, whereas the two extra central charges play the role of gauge transformation

generators which insert or remove a background chiral field Z [6].

The fundamental representation of psu(2|2) n R
3 ' su(2|2) n R

2 corresponds to a 2|2

dimensional superspace given by the basis

≡

(

φa

ψα

)

, a = 1 , 2 , α = 1 , 2 . (8)

Here we have adopted the notation for super Young tableau introduced in [17]. The fields

φa and ψα are bosonic and fermionic, respectively. The group generators acting on this

space can be written in the following 4 × 4 supermatrix form:

(

Ra
b Qα

b

Sa
β Lα

β

)

(9)

where R and L are 2 × 2 hermitian SU(2) generators, whereas the entries in Q and S

are complex Grassmann variables. We can decompose the fundamental representation

under the maximal bosonic subgroup SU(2) × SU(2) as,

=

φa

︷ ︸︸ ︷

( ,1)⊕

ψα

︷ ︸︸ ︷

(1, ) . (10)

3These two extra central charges P and K in fact combine with C to give a vector under group SO(1, 2) [6,

4].
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The canonical action of the psu(2|2) n R
3 generators on the components φa and ψα

are then given by [6]

Qα
a|φ

b〉 = a δb
a|ψ

α〉 , (11)

Qα
a|ψ

β〉 = b εαβεab|φ
bZ+〉 , (12)

Sa
α|φ

b〉 = c εabεαβ|ψ
βZ−〉 , (13)

Sa
α|ψ

β〉 = d δβ
α|φ

a〉 , (14)

whereas the SU(2) generators R and L act on bosonic and fermionic components as

Ra
b|φ

c〉 = δc
b |φ

a〉 − 1
2δa

b |φ
c〉 , (15)

Lα
β|ψ

γ〉 = δγ
β |ψ

α〉 − 1
2δα

β |ψ
γ〉 . (16)

Here a, b, c and d can be expressed as functions of the magnon spectral parameters x+

and x−, which in turns are related to individual magnon momentum p by

exp(ip) =
x+

x−
. (17)

The symbols Z± in (12) and (13) denote an inserting (+) or a removing (−) of a background

Z field on the right of the excitation φa or ψα, respectively. It is important to note that the

fundamental representation is in fact a short or atypical representation of psu(2|2)nR
3,

and it satisfies the shortening condition which for this case is given in terms of the three

central charges C, P and K (eigenvalues of C, P and K, respectively) as [16, 18]

C2 − PK =
1

4
. (18)

Using the explicit parameterisations for the central charges in terms of spectral parameters

given in [6], the shortening condition is equivalent to the constraint on the magnon spectral

parameters:

x+ +
g2

2x+
− x− −

g2

2x−
= i . (19)

The exact magnon dispersion relation (1) then arises from the protected central charge C

carried by the fundamental representation .

Let us recall here that, in terms of N = 4 SUSY Yang-Mills, the elementary excitation

of the spin chain corresponds to the insertion of an impurity field with4 ∆0 − J1 = 1 into

Tr
(
ZJ1

)
. In the limit J1 → ∞, this corresponds to a single magnon propagating over

the ferromagnetic groundstate of the infinite chain. There are eight bosonic and eight

fermionic impurities which correspond to sixteen different possible polarisations of the

magnon. Explicitly, they correspond to different elements of the set {Φi,Dµ,Ψαβ ,Ψα̇β̇}.

Here i, µ = 1, . . . , 4 are indices in the vector representation of the two SO(4) factors left

unbroken by the ferromagnetic groundstate. The former is the unbroken R-symmetry of

the N = 4 theory while the latter corresponds to conformal spin. In view of their interpre-

tation as rotations in the dual string geometry, we denote these SO(4)S5 and SO(4)AdS5
,

4Here ∆0 denotes the bare dimension of the inserted field.
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Fields SU(2)S5,L × SU(2)AdS5,R × SU(2)S5,R × SU(2)AdS5,L ∆0 − J1 ∆0 + J1

Z ( 1 , 1 ; 1 , 1 ) 0 2

Z̄ ( 1 , 1 ; 1 , 1 ) 2 0

Φi ( , 1 ; , 1 ) 1 1

Dµ ( 1 , ; 1 , ) 1 1

Ψαβ ( , 1 ; 1 , ) 1 2

Ψ
α̇β̇

( 1 , ; , 1 ) 1 2

Table 1: SU(2)4 representations of N = 4 fields.

respectively. The scalars Φi and covariant derivatives Dµ form a vector representation of

each group. We also use the standard isomorphism SO(4) ' SU(2)L ×SU(2)R to introduce

dotted and undotted spinor indices for each factor. The fermionic fields of the N = 4 the-

ory, denoted Ψαβ, Ψα̇β̇ (α, α̇ = 1, 2) transform in the appropriate bispinor representations.

The quantum numbers of the N = 4 fields under the bosonic symmetries are summarised

in the following table (for more details, see for example [19]).

To interpret the impurities described above in terms of the supergroup (PSU(2|2) ×

PSU(2|2)) n R
3, we note that the bifundamental representation is given by the direct

product between two copies of fundamental described above,

( ; ) = ( ,1; ,1) ⊕ ( ,1;1, ) ⊕ (1, ; ,1) ⊕ (1, ;1, ) . (20)

Here we have also decomposed ( ; ) in terms of representations of the SU(2)4 bosonic

subgroup of (PSU(2|2)×PSU(2|2))nR
3 . There are again sixteen components within this

decomposition, precisely what one needs to incoporate the elementary excitations listed in

table 1. By identifying the four SU(2) factors in (20), column by column, with the other

four in table 1, we can identify each term in (20) with an impurity N = 4 theory according

to,

Φi ≡ ( ,1; ,1) , Dµ ≡ (1, ;1, ) , Ψαβ ≡ ( ,1;1, ) , Ψ
α̇β̇

≡ (1, ; ,1) .

(21)

So the sixteen elementary excitations completely fill up the bifundamental representation

of SU(2|2) × SU(2|2).

Having treated the case of the elementary magnon, we now proceed to determine the

corresponding representations of (psu(2|2)×psu(2|2))nR
3 relevant for the magnon bound-

states discovered in [10]. The natural starting point for the Q-magnon boundstate is to con-

sider the tensor product between Q copies of the elementary magnon representation ( ; )

as given in (20). In particular the magnon boundstates should transform in the short irre-

ducible representations under the residual symmetry algebra (psu(2|2) × psu(2|2)) n R
3.

As above we will begin by considering a single copy of psu(2|2) n R
3 and will start

with the simplest case taking the tensor product between two fundamentals as described

in (10). In the usual experience of dealing with Lie algebra, one expects that tensoring

two or more irreducible representations (e.g., the fundamental representation) would yield

direct sum of irreducible representations (including long and short). However, as pointed

– 5 –
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out in [16, 18], such multiplet splitting does not happen generally for psu(2|2) n R
3. In

particular, for the tensor product of two fundamental representations, the splitting into

irreducible representations of lower dimensions can only happen if the central charges

carried by the two constituent magnons satisfy the “splitting condition”

(C1 + C2)
2 − (P1 + P2)(K1 + K2) = 1 ⇒ 2C1C2 − P1K2 −K1P2 =

1

2
. (22)

Here Ci, Pi and Ki are the central charges carried by the constituent magnons i = 1, 2.

Clearly for arbitrary combinations of the central charges, (22) would not be satisfied,

hence tensoring two fundamental representations generically gives us a long irreducible

representation of sixteen dimensions.

Interestingly, the splitting condition (22) can be satisfied when the spectral parameters

obeys the boundstate pole condition established in [10, 13], that is

x−
1 = x+

2 . (23)

This can be shown by explicitly calculating the expression in (22) using the spectral pa-

rameters.

In this special case, the long multiplet of sixteen dimensions splits into direct sum of

two short representations of eight dimensions, and we can label them using the branching

rules for super Young tableaux worked out in [17],

⊗ = ⊕ . (24)

The two terms on the r.h.s. of (24) represent distinct irreducible representations of

psu(2|2) n R
3. The first irreducible representation, denoted , corresponds to a sym-

metrisation of indices for the bosonic components φas of each fundamental representation

and anti-symmetrisation of indices for the corresponding Grassmann components ψαs. We

will call this the “super-symmetric” representation. In contrast, the second term corre-

sponds to a “super-anti-symmetric” representation where the bosonic/fermionic indices are

antisymmetrised/symmetrised, respectively. Both of them are in fact short irreducible rep-

resentations of psu(2|2)nR
3, satisfying the shortening condition given in [16] and carrying

the protected central charges.

We can further decompose these short representations into representations under its

SU(2)×SU(2) bosonic subgroup.5 In terms of standard SU(2) Young tableaux the decom-

positions are

= ( ,1) ⊕ ( , ) ⊕ (1,1) , (25)

= (1,1) ⊕ ( , ) ⊕ (1, ) . (26)

The generalisation to the physical case with two factors of psu(2|2) n R
3 with their

central charges identified is straightforward. Combining (20) and (24), the tensor product

5In fact, our situation is further simplified as the subgroups only involve SU(2)s, whose Young tableaux

only contain single rows at most.
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of two bifundamental representations can be decomposed as

( ; ) ⊗ ( ; ) = ( ; ) ⊕ ( ; ) ⊕ ( ; ) ⊕ ( ; ) . (27)

Each irreducible representation in the decomposition in (27) is manifestly supersymmetric,

containing equal number of bosonic and fermionic components. To identify the nature of

the corresponding states, it is convenient to further decompose each term in the decompo-

sition (27) into the irreducible representations of the four SU(2) subgroups. For example,

the first term yields,

( ; ) = ( ,1; ,1) ⊕ ( ,1;1,1) ⊕ (1,1; ,1) ⊕ (1,1;1,1)

⊕ ( , ;1,1) ⊕ ( , ; ,1)

⊕ (1,1; , ) ⊕ ( ,1; , )

⊕ ( , ; , ) . (28)

As each state in the constituent bifundamental multiplet corresponds to an insertion of a

particular impurity in the N = 4 theory, we can identify the terms on the r.h.s. of (28)

with appropriate bilinears in the N = 4 fields. In the appendix, we have listed the SU(2)4

quantum numbers of arising from each product of two N = 4 impurities. Comparing (28)

with the results in the appendix, we identify the relevant bilinears as,

( ; ) ≡ (Φi ⊗ Φj) ⊕ (Φi ⊗ Ψαβ) ⊕ (Φi ⊗ Ψ
α̇β̇

) ⊕ (Da ⊗ Φi) . (29)

where appropriate (anti-)symmetrisations over indices is understood.

As explained above, the two magnon boundstates in the SU(2) sector must corre-

spond to (at least) one of the short representations of (psu(2|2) × psu(2|2)) n R
3 appear-

ing in the decomposition (28). To identify the relevant representation we note that each

magnon of the SU(2) sector carries one unit of a second U(1) R-charge denoted J2 in [10].

The charge J2 corresponds to one Cartan generator of the unbroken R-symmetry group

SO(4) ' SU(2)×SU(2) ⊂ (PSU(2|2)×PSU(2|2))nR
3 normalised to that states in the bi-

fundamental representation of SU(2)× SU(2) have charges −1 ≤ J2 ≤ 1. The two-magnon

boundstate has charge J2 = 2. It is straightforward to check that this value is realised in the

term ( , 1; , 1) appearing in the decomposition (28) of the “bi-super-symmetrised”

representation ( ; ) of (psu(2|2) × psu(2|2)) n R
3. One may also check that the re-

maining irreducible representations in the decomposition (27) of the tensor product do not

contain states with J2 = 2.

Summarising the above discussion we deduce that the two magnon boundstate dis-

covered in [10] is one component of a multiplet of states in the ( ; ) of (psu(2|2) ×

psu(2|2))nR
3. The dimension of this representation is sixty-four, which corresponds to the

number of independent polarisations of the two magnon boundstate. The various bilinear

impurities corresponding to these polarisations appear in (29). A check on the identifica-

tion described above is that there are no bilinears involving only either two fermions or

two derivatives. This agrees with the known absence of two magnon boundstates in the

SU(1|1) and SL(2, R) sectors, respectively [4, 12, 14].

– 7 –
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It is straightforward to extend the discussion to the case of general Q-magnon scatter-

ing, now the multiplet splitting condition can be given by

C2
Q − PQKQ =

Q2

4
, (30)

where CQ, PQ and KQ are the central charges carried by the generic long irreducible

representation formed by tensor product between Q fundamentals. This can be satisfied

when we impose the boundstate condition

x−
i = x+

i+1 , i = 1 , 2 , . . . , Q − 1 . (31)

The tensor product between Q fundamental representations generally consists of direct

sum of long representations [16]. In this special limit (31), it can be further decomposed

into direct sum of short representations and labelled by the branching rules in [3] as

( ; ) ⊗ · · · ⊗ ( ; )
︸ ︷︷ ︸

Q

= ( · · ·
︸ ︷︷ ︸

Q

; · · ·
︸ ︷︷ ︸

Q

) ⊕ · · · , (32)

where the dots represents the direct sum of other irreducible representations. In particular,

the representation · · · being again a short representation under psu(2|2) n R
3 sat-

isfies the shortening condition in [16] and carries protected central charges. Furthermore,

by considering the multi-magnon boundstates in the SU(2) spin chain, we can conclude

that the most general Q-magnon boundstate should be contained in the first term of the

decomposition (32), as such term contains a state of highest weight Q. It should be a

straightforward but tedious excercise to decompose ( · · · ; · · · ) into the irre-

ducible representations of SU(2)4, and rewrite the various terms in the decomposition in

terms of the N = 4 SYM fields as we did for the case of Q = 2. It would also be inter-

esting to identify these different species of boundstates from the poles in their associated

scattering matrices [6, 20]. Even though the classification here does not completely rule

out the possibility of having boundstates in other irreducible representation at larger Q,

the states in ( · · · ; · · · ) should be regarded as the minimal set of boundstates

in the asymptotic spectrum.

Here we would like to discuss the number of the possible polarisations for a Q-magnon

boundstate. In decomposing the irreducible representations of SU(2|2) into those of the

SU(2)×SU(2) subgroup, the valid Young tableau involved should only contain single rows to

comply with the usual rules. As the result the decomposition for irreducible representation

of our interests terminates after three terms:

· · ·
︸ ︷︷ ︸

Q

= ( · · ·
︸ ︷︷ ︸

Q

,1) + ( · · ·
︸ ︷︷ ︸

Q−1

, ) + ( · · ·
︸ ︷︷ ︸

Q−2

,1) . (33)

Simple counting shows that there are 4Q states in this decomposition, and for

( · · · ; · · · ) which contains all possible polarisations for Q-magnon bound-

states, there are (4Q)2 = 16Q2 states. This is the degeneracies for a given boundstate

charge Q and it is drastically different from the number of possible out-going states for

– 8 –
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Q-magnon scatterings, which goes exponentially with Q. This concludes our discussion on

the representation of the magnon boundstates.

Having worked out the representation, it is rather straightforward to obtain an exact

dispersion relation for the general Q-magnon bound states by extending the arguments

in [6]. The idea is that, as we discussed earlier, the energy E of the magnon boundstate

should again be the physical central charge C carried by the associated irreducible represen-

tation ( · · · ; · · · ) under the extended residual symmetry algebra. Recall that

this central charge (along with the two extra ones) is shared between the two su(2|2)s in

the extended algebra, in addition, the magnon boundstate transforms under identical short

irreducible representation with respect to each su(2|2). We conclude that it is sufficient to

consider the action of only single su(2|2) (with two extra central charges) on the bound-

state, and treat the components transforming under the other su(2|2) as the spectators,

just like the infinite number of background Z fields. Moreover, as C should commute with

other group generators which relate all 16Q2 different polarisations for magnon boundstate

of charge Q, the dispersion relation deduce here would be identical for all of them.

Moving onto a Q-magnon boundstate which transforms as · · · under psu(2|2)n

R
3, so we have

· · ·
︸ ︷︷ ︸

Q

: |ΞQ〉 ≡ |ξ(A1ξA2 . . . ξAQ−1ξAQ)〉 , (34)

where we have omitted the infinite number of background Z fields. Here we have also

introduced ξAi = {φai ;ψαi} a generalized vector and Ai = {ai, αi} a generalized index

for notational conveniences. We are interested in the central charge CQ carried by such

state, which would in turn give us the required dispersion relation. This can be obtained

by considering the actions from both sides of the commutator (5) on the higher tensor

representations, and combining with the algebraic relations (11)–(16).

We shall give our calculational details in the generalized indices Ai and only focus on

the algebraic structures, the explicit conversion into bosonic and fermionic indices, ai and

αi respectively, should be obvious. First let us act the l.h.s. of (5) on |ΞQ〉 using (11)–(14)

to obtain

Q
∑

i=1

{Q,S}Bi

Ai
|ΞCi

Q 〉 =

Q
∑

i=1

(aidi − bici) δCi

Ai
|ΞBi

Q 〉 +

Q
∑

i=1

biciδ
Bi

Ai
|ΞCi

Q 〉 . (35)

The notation here means that {Q,S}Bi

Ai
only acts on the i-th fundamental representation

in the tensor representation and the superscript Ci in |ΞCi

Q 〉 is also for highlighting such

fact.

On the other hand, the action of the r.h.s. of (5) on |ΞQ〉 gives.

Q
∑

i=1

(L + R + C)Bi

Ai
|ΞCi

Q 〉 =

Q
∑

i=1

{

δCi

Ai
|ΞBi

Q 〉 +

(

Ci −
1

2

)

δBi

Ai
|ΞCi

Q 〉

}

, (36)

where we have used Ci to denote the central charge carried by the ξAi , that is C|ξAi〉 =

Ci|ξ
Ai〉. From (35) and (36), we can deduce the closure of the symmetry algebra requires

aidi − bici = 1 and Ci =
(

1
2 + bici

)
, i = 1 , . . . , Q , (37)
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which then implies that Ci = 1
2(aidi + bici). The central charge CQ of |ΞQ〉 is given by

sum of the individual central charges, so we have

CQ =

Q
∑

i=1

Ci =
1

2

Q
∑

i=1

(aidi + bici) =
1

2
(AD + BC) . (38)

This is the central charge of the Q-magnon boundstate in terms of ai, bi, ci and di, and

here we have also introduced A,B,C and D which should be functions of the spectral

parameters for the boundtstates X±. To proceed obtaining the explicit expression for CQ,

we need to work out A,B,C and D or at least some combinations of them in terms of the

magnon boundstate spectral parameters, this is where the two extra central charges P and

R in (6) and (7) come in. First consider the actions of (6) and (7) on |ΞQ〉, one can deduce

that

P|ΞQ〉 =

Q
∑

i=1

aibi

Q
∏

j=i+1

exp(−ipj)|Ξ
Ci

Q Z+〉 , (39)

K|ΞQ〉 =

Q
∑

i=1

cidi

Q
∏

j=i+1

exp(ipj)|Ξ
Ci

Q Z−〉 . (40)

In deducing (39) and (40), we have also used the consistency relation |Z±ξAi〉 =

exp(∓ipi)|ξ
AiZ±〉 to shift the insertion/removal of Z field to the far right.

Using the expressions for ai,bi, ci and di in [6], we have aibi = α(exp(−ipi) − 1) and

cidi = β(exp(ipi)−1) with α and β some constants for the time being. The two additional

central charges carried by the magnon boundstate are given by

PQ = α

(
Q
∏

i=1

exp(−ipi) − 1

)

= AB and KQ = β

(
Q

∏

i=1

exp(ipi) − 1

)

= CD . (41)

The momentum carried by the magnon boundstates should be the sum of constituent

momenta, this allows us to write down

PQ = AB = α(e−iP − 1) = α

(
X−

X+
− 1

)

, KQ = CD = β(eiP − 1) = β

(
X+

X−
− 1

)

,

(42)

where P =
∑Q

i=1 pi is the momentum carried by the Q-magnon boundstate. When we

restrict to the physical states which living in psu(2|2) n R
3, both of extra central charges

should vanish.

Moreover, as the Q-magnon boundstates transform in the short representation

· · · of psu(2|2) n R
3, in terms of its central charges CQ,PQ and KQ, the short-

ening condition it obeys is

C2
Q − PQKQ =

Q2

4
. (43)

In the light of (18) and (19), this should in turn provide a constraint on the boundstate

spectral parameters X± as

X+ +
g2

2X+
− X− −

g2

2X−
= iQ . (44)
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This can be guaranteed and reduced correctly to trivial Q = 1 case if we set

AD =

Q
∑

i=1

aidi = −i(X+ − X−) ,

BC =

Q
∑

i=1

bici = i
g2

2

(
1

X+
−

1

X−

)

. (45)

Using the explicit expressions for ai,bi, ci and di in terms of the magnon spectral param-

eters given in [6], we deduce that

X+ − X− =

Q
∑

i=1

(x+
i − x−

i ) ,

1

X+
−

1

X−
=

Q
∑

i=1

(
1

x+
i

−
1

x−
i

)

. (46)

Combining (46) with (42), they give three constraints on {x±
1 , . . . , x±

Q} in terms of X±

which can be satisfied by the combination

X+ = x+
1 , X− = x−

Q , (47)

x−
i = x+

i+1 , i = 1 , . . . , Q − 1 . (48)

The equation (48) is identical to the multiplet splitting condition given earlier (30), as

the “super-symmetric” representation · · · can only arise from the decomposition of

general Q-magnon tensor product after (30) is imposed.

From (42) and (43) or (44), we can also deduce CQ for the magnon boundstate

CQ =
1

2

√

(AD − BC)2 + 4ABCD =
1

2

√

Q2 + 16αβ sin2

(
P

2

)

. (49)

The product αβ is in general a function of the ’t Hooft coupling λ. For the case of

single magnon, it has been set to αβ = λ/16π2 by considering the BMN limit [7], this

dependence should interpolate to case of Q > 1, and indeed one can confirm that for

example by considering the Frolov-Tseytlin limit [21] as in [10]. In any case, we deduce

that the dispersion relation for the magnon boundstate from the group theoretical means

is

E = ∆ − J1 ≡ 2CQ =

√

Q2 +
λ

π2
sin2

(
P

2

)

. (50)

This formula reduces the one proposed in [10] for single magnon boundstate of charge

Q = 1, with ∆−J1 coincides with (1). It is also important to note that, as discussed earlier,

there will be 16Q2-fold degeneracies which correspond to the all possible polarisations of a

Q-magnon boundstate, all share the same dispersion relation (1).

We would also like to make a comment on the case when there are more than one

boundstate in the asymptotic spin chain, namely a state of the form |ΞQ1
. . . ΞQM

〉. Here
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M is the number of the boundstates each of which are well-separated, and Qk is the number

of constituent magnons in the k-th boundstate. In this case the dispersion relation (50) is

simply generalised to give

E = ∆ − J1 ≡
M∑

k=1

2CQk
with CQk

≡
1

2

√

Q2
k +

λ

π2
sin2

(
Pk

2

)

, (51)

where Pk is the total momentum of the k-th boundstate in the asymptotic spin chain.

In this paper we have described the infinite tower of BPS boundstates appearing in the

asymptotic spectrum of the N = 4 spin chain and identified the corresponding represen-

tation of supersymmetry in which they transform. As these are short representations we

expect that these states are present for all values of the ’t Hooft coupling, λ. Indeed, as

discussed in [10, 11], the representatives of the boundstate multiplets lying in a given SU(2)

sector are directly visible both in one-loop gauge theory and in semiclassical string theory

which correspond to small and large λ respectively. An obvious question is whether addi-

tional asymptotic states are also present. At this point we cannot rule out the possibility

that some of the additional short representations, which appear in the tensor product of bi-

fundamentals when the shortening condition is obeyed, also correspond to BPS boundstates

in the spectrum. However, the representations which can occur are certainly constrained

by the known absence of boundstates in the remaining rank one sectors. In particular this

rules out additional boundstates with Q = 2.

In closing, we should note that there are two classes of states which we have not

included in our discussion. First, the semiclassical string theory analysis of [4] suggests the

presence of an infinite tower of neutral boundstates appearing as poles in the two-magnon

S-matrix. These poles should appear at values of the kinematic variables which do not

satisfy the shortenting condition. In fact, for such generic values of the momenta the tensor

product of two bifundamentals actually consists of a single irreducible long multiplet [16].

Each of the neutral boundstates of [4] must therefore fill out such a multiplet. As the

energies of these states are not protected, their behaviour away from the region of large ’t

Hooft coupling is still unclear. Finally we recall that the N = 4 spin chain also contains

a singlet state of zero energy [6]. However, in a crossing invariant theory, this state is

indistinguishable from the vacuum.
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A. Decomposition of N = 4 fields into SU(2)4 representations

Here we list all possible tensor decompositions between two N = 4 SYM excitations for

readers’ convenience.

Φi ⊗ Φj : ( ,1; ,1) ⊗ ( ,1; ,1) (A.1)

= ( ,1; ,1) ⊕ ( ,1;1,1) ⊕ (1,1; ,1) ⊕ (1,1;1,1) ,

Da ⊗ Db : (1, ;1, ) ⊗ (1, ;1, ) (A.2)

= (1, ;1, ) ⊕ (1, ;1,1) ⊕ (1,1;1, ) ⊕ (1,1;1,1) ,

Da ⊗ Φi : (1, ;1, ) ⊗ ( ,1; ,1) = ( , ; , ) , (A.3)

Ψα̇β̇ ⊗ Ψγδ : (1, ; ,1) ⊗ ( ,1;1, ) = ( , ; , ) , (A.4)

Ψαβ ⊗ Ψγδ : ( ,1;1, ) ⊗ ( ,1;1, ) (A.5)

= ( ,1;1, ) ⊕ ( ,1;1,1) ⊕ (1,1;1, ) ⊕ (1,1;1,1) ,

Ψ
α̇β̇

⊗ Ψ
γ̇δ̇

: (1, ; ,1) ⊗ (1, ; ,1) (A.6)

= (1, ; ,1) ⊕ (1, ;1,1) ⊕ (1,1; ,1) ⊕ (1,1;1,1) ,

Φi ⊗ Ψαβ : ( ,1; ,1) ⊗ ( ,1;1, ) = (1,1; , ) ⊕ ( ,1; , ) , (A.7)

Φi ⊗ Ψ
α̇β̇

: ( ,1; ,1) ⊗ (1, ; ,1) = ( , ;1,1) ⊕ ( , ; ,1) , (A.8)

Da ⊗ Ψαβ : (1, ;1, ) ⊗ ( ,1;1, ) = ( , ;1,1) ⊕ ( , ;1, ) , (A.9)

Da ⊗ Ψα̇β̇ : (1, ;1, ) ⊗ (1, ; ,1) = (1,1; , ) ⊕ (1, ; , ) . (A.10)
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